

180° Angular Gripper Cam Style Rack & Pinion Style Series MHY2/MHV2

MHZ2

MHZJ2

MHQ MHL2

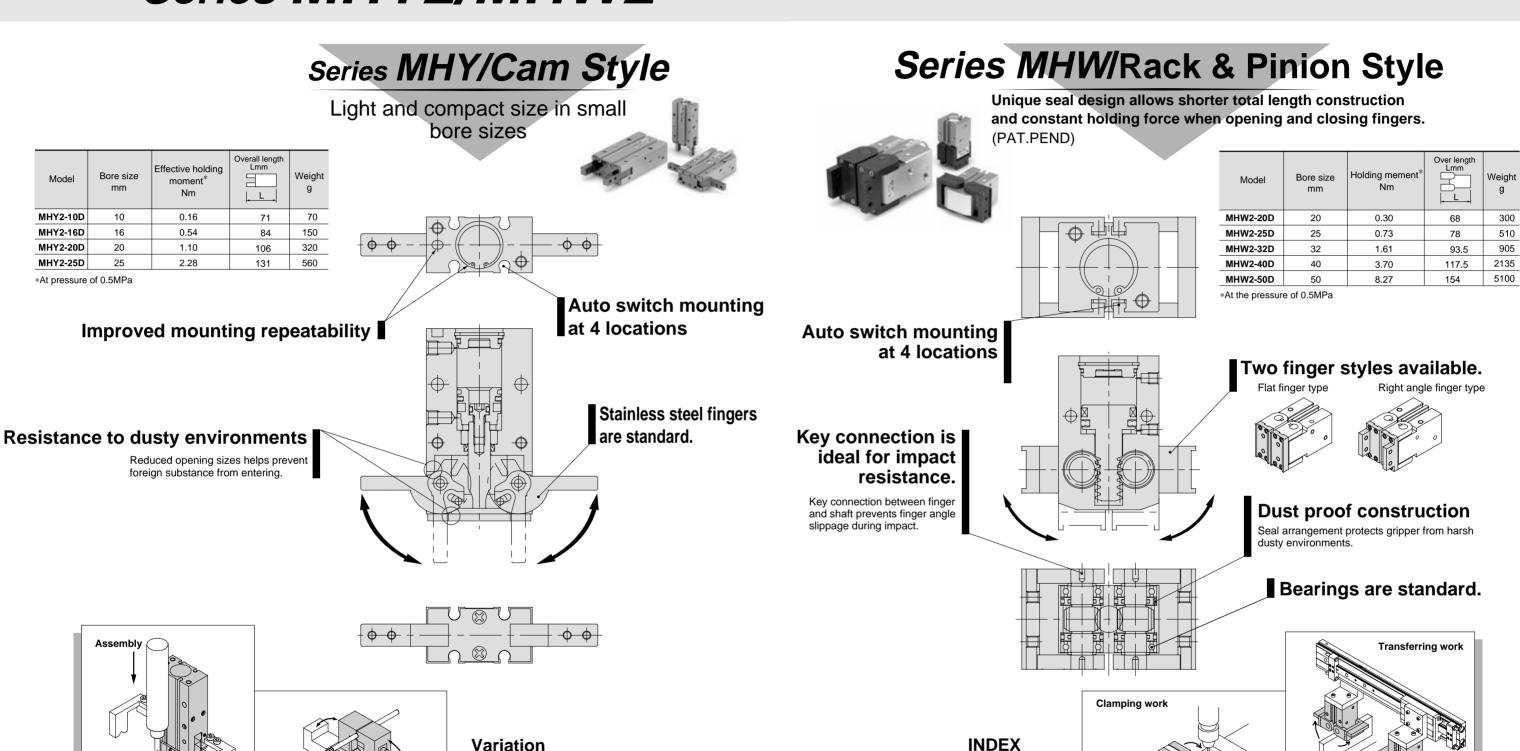
MHR

MHK

MHS

MHC2

MHT2


MHY2

MHW2

Cam actuation style is now standardized!

180° Angular Gripper

Series MHY2/MHV2 Series NHY2/MHV2

Applicable auto switch

Solid state switch D- F9/F9 □ W type

D-F9BA Type

Solid state switch
D-Y5/Y6 type

D-Y7BA type

Page

P.2.8-8 to 2.8-15

P.2.8-16 to 2.8-23

Bore size (mm)

10 16 20 25 32 40 50

Cam style

Clamping of work

Series MHY

Rack & Pinion

Series MHW

2.8-3

MHZ2

MHZJ2

MHQ

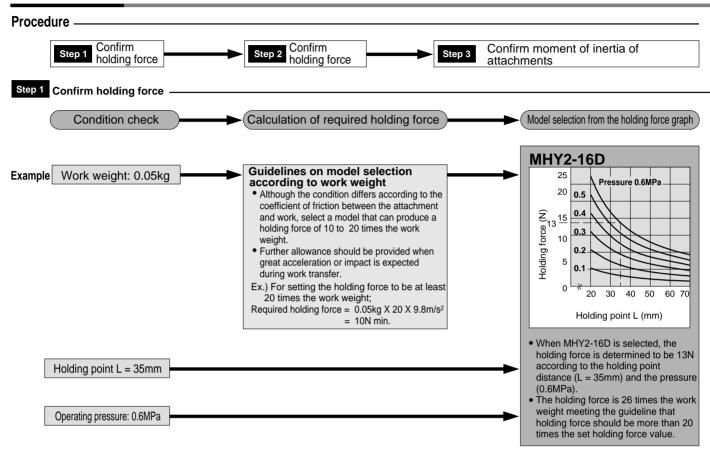
MHL2

MHR

MHK

MHS

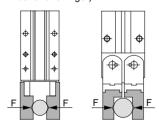
MHC2

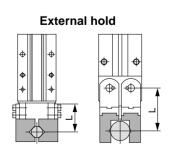

MHT2

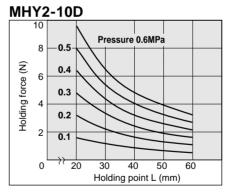
MHY2

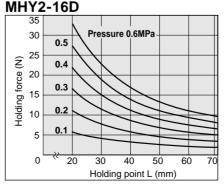
MRHQ

Series MHY2/MHW2 How to Select the Applicable Model

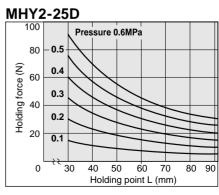

How to Select

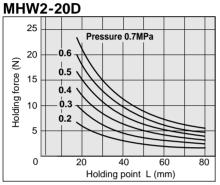


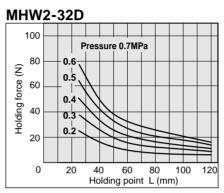

Effective holding force

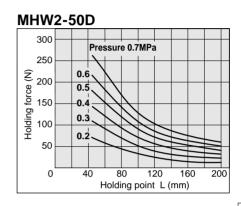

Series MHY2/MHW2 Double acting

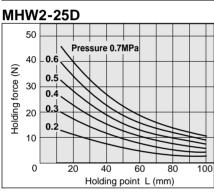
 Indication of effective holding force
 The holding force shown in the tables represents the holding force of one finger when all fingers and attachments are in contact with the work.
 (F: Thrust of one finger)

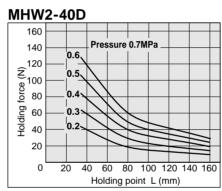


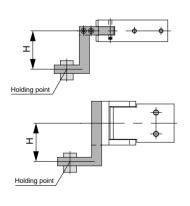


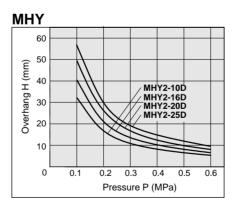


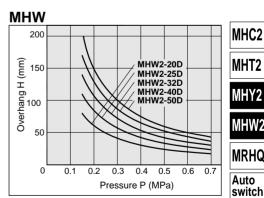





180° Angular Gripper Series MHY2/MHW2



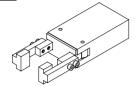

MHZ2


MHK

MHS

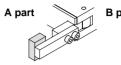
Confirmation of holding point -

MHY2 MHW2


MRHQ Auto switch

- Work should be held at a point within the range of overhanging distance (H) for a given pressure indicated in the tables on the right.
- When the work is held at a point outside of the recommended range for a given pressure, it may causes adverse effect on the product life.

Series MHY2/MHW2


How to Select the Applicable Model

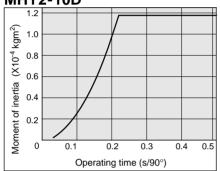
Step 3 Confirm moment of inertia of attachments

Confirm the moment of inertia for the attachment at one side. Calculate the moment of inertia for A and B separately as shown in the figures on the right.

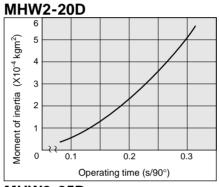
Procedure	Formula	Calculation example
Check the operating conditions, dimensions of attachment, etc.	A part B part d d	Operating model: MHY2-16D Opening time: 0.15s a = 40 (mm) b = 7 (mm) c = 8 (mm) d = 5 (mm) e = 10 (mm) f = 12 (mm)
Calculate the moment of inertia of attachment.	A part r_1 r_2 r_3 r_4 r_5	Material of attachment: Aluminum alloy (Specific gravity = 2.7) $r_1 = 37$ (mm) $r_2 = 37$ (mm) $r_3 = 40 \times 7 \times 8 \times 2.7 \times 10^{-6}$ $r_4 = 0.006 (kg)$ $r_5 = 0.006 (kg)$ $r_5 = 0.8 \times 10^{-6} (kgm^2)$ $r_5 = 0.8 \times 10^{-6} + 0.006 \times 37^2 \times 10^{-6}$ $r_5 = 9.0 \times 10^{-6} (kgm^2)$ $r_5 = 47 (mm)$ $r_5 = 47 (mm)$ $r_5 = 0.002 (kg)$ $r_5 = 0.002 \times 10^{-6} (kgm^2)$ $r_5 = 0.02 \times 10^{-6} + 0.002 \times 47^2 \times 10^{-6}$ $r_5 = 0.02 \times 10^{-6} + 0.002 \times 47^2 \times 10^{-6}$ $r_5 = 0.02 \times 10^{-6} + 0.02 \times 10^{-6}$ $r_5 = 0.13 \times 10^{-4} (kgm^2)$ $r_5 = 0.13 \times 10^{-4} (kgm^2)$
Determine the allowable moment of inertia from the graph.	MHY2-16D 3.0 2.5 2.5 2.0 4.0 1.5 0.5 0.1 0.1 0.2 0.3 0.4 0.5 Operating time (s/90°)	The moment of inertia is determined to be 0.9 X 10 ⁻⁴ (kgm ²) according to the operating time (0.15s) from the graph on the left.
Confirm the moment of inertia of one attachment is within the allowable range.	Moment of inertia of attachment < Allowable moment of intertia	0.13 X 10 ⁻⁴ (kgm ²) < 0.9 X 10 ⁻⁴ (kgm ²) Possible to use this model MHY2-16D completely.

180° Angular Gripper Series MHY2/MHW2

Symbol

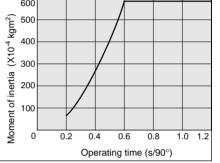

Symbol	Definition	Unit
Z	Finger rotation axis	_
Z1	Axis on the center gravity of A part of attachment and parallel to Z	_
Z2	Axis on the center gravity of B part of attachment and parallel to Z	_
1	Total moment of inertia for attachment	kgm ²
Iz1	Inertia moment around the Z1 axis of A part of attachment	kgm ²
Iz2	Inertia moment around the Z2 axis of B part of attachment	kgm ²

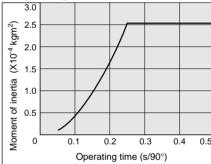
Symbol	Definition	Unit
IA	Moment of inertia around the Z axis of A part of attachment	kgm ²
lв	Moment of inertia around the Z axis of B part of attachment	kgm ²
m1	Weight of A part of attachment	kg
m2	Weight of B part of attachment	kg
r1	Distance between Z and Z1 axis	mm
r2	Distance between Z and Z2 axis	mm


MHW2-50D

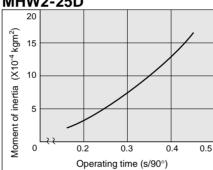
Allowable range of inertia moment of attachment

MHY2-10D

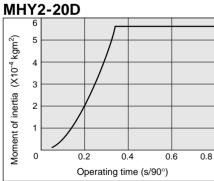


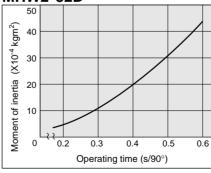


MHZ2


MHZJ2

MHW2-25D



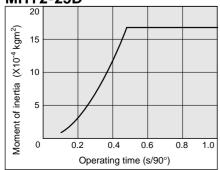

MHR

MHK

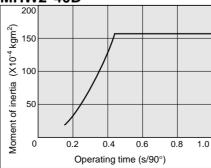
MHS

MHW2-32D

MHC2

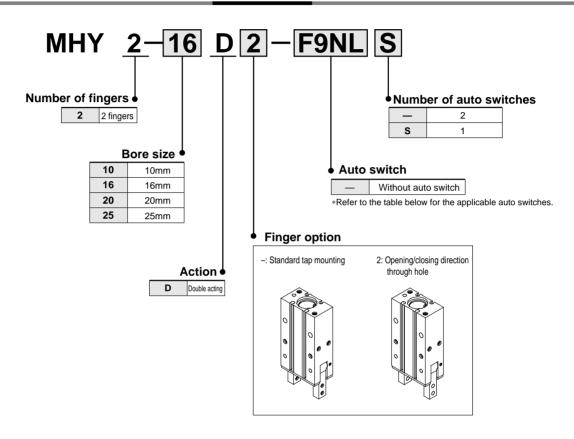


MHT2 MHY2


MHW2

MRHQ

MHY2-25D


MHW2-40D

180° Angular Gripper Cam Style

Series MHY2 Ø10, Ø16, Ø20, Ø25

How to Order

Applicable Auto Switches

Applicable Auto Switches												
	0				Wiring Load voltage		Symbol		Lead wire length (m)			
Type	Special function	Electrical entry	Indicator	(Output)			age	Electrical entry		0.5	3	Applicable load
	Tariotion	Citiy		(Output)	D	С	AC	Perpendicular	In-line	(–)	(L)	load
			With 2 3 (N 3 (F	3 wire (NPN)	PN) vire NP) vire vire PN) vire NP)	5V		F9NV	F9N	•	•	
	-			3 wire (PNP)		12V		F9PV	F9P	•	•	
Solid		Grommet		2 wire		12V		F9BV	F9B	•	•	Relay
state Dia ind	Diagnosis indicator	sis tor or		3 wire (NPN)		5V		F9NWV	F9NW	•	•	PLC
	(2 color indication)			3 wire (PNP)		12V		F9PWV	F9PW	•	•	
	<i>'</i>			2 wire		12V		F9BWV	F9BW	•	•	

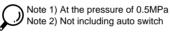
*Lead wire length: 0.5m...... (Example) F9N 3m....L (Example) F9NL Note 1) Refer to "Auto Switch Specifications" on p.2.11-1.

180° Angular Gripper *Series MHY2*

Specifications

Symbol

Double acting



Fluid	Air
Operating pressure	0.1 to 0.6MPa
Ambient and fluid temperature	−10 to 60°C
Repeatability	±0.2mm
Max. operating frequency	60c.p.m
Lubrication	Not required
Action	Double acting
Auto switch (Optional) Note)	Solid state switch (3 wire, 2 wire)

Note) Refer to p. 2.11-1 for details of auto switch specifications.

Model

Model	Bore size (mm)	Effective holding force (Nm) (1)	Opening angle (Both sides) Opening Closing side		Weight (2) (g)
MHY2-10D	10	0.16		-3°	70
MHY2-16D	16	0.54	180°		150
MHY2-20D	20	1.10	180 –3		320
MHY2-25D	25	2.28			560

- \bullet Refer to the "How to Select the Applicable Model" on p.2.8-4.
- Refer to p.2.8-4 and 2.8-5 for the details of effective holding force and allowable overhanging distance.

MHZ2

MHZJ2

MHQ MHL2

MHR

MHK

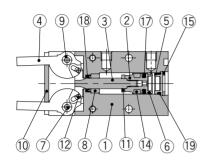
MHS

MHC2

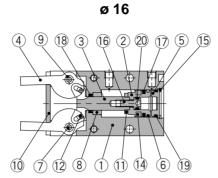
MHT2

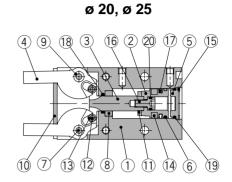
MHY2

MHW2

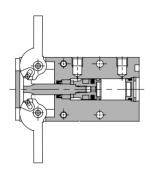

MRHQ

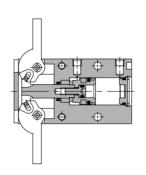
Series MHY2

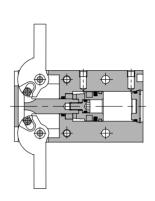

Construction


Closed

Ciosea




ø 10

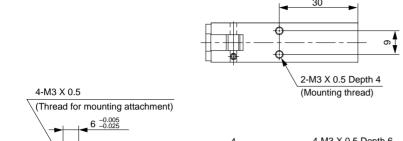


Open

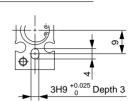
Component Parts

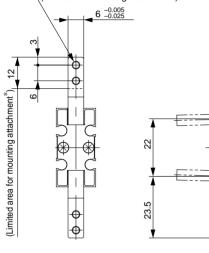
No	. Description	Material	Note
1	Body	Aluminum alloy	Hard anodized
2	Piston	ø10: Stainless steel ø16 to 25: Aluminum alloy	ø16 to 25: Chromated
3	Joint	Stainless steel	Heat treatment
4	Finger	Stainless steel	Heat treatment
(5)	Сар	Resin	
6	Ware ring	Resin	
7	Shaft	Stainless steel	Nitriding
8	Bushing A	Sintered alloy steel	

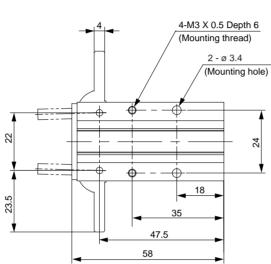
Component Parts

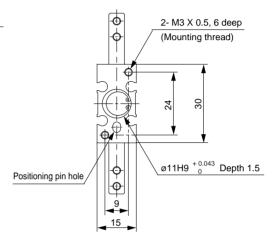

No.	Description	Material	Note
9	Bushing B	Sintered alloy steel	
10	End plate	Stainless steel	
11)	Bumper	Urethane rubber	
12	Cylindrical roller	High carbon chrome bearing steel	
13	Joint roller	Carbon steel	Nitriding
14	Rubber magnet	Synthetic rubber	
15	C-shape snap ring	Carbon steel	Nickel plated
16	Piston bolt	Stainless steel	

Replacement Parts: Seal Kits

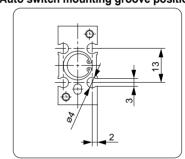

No	No. Description	Material	Kit No.				
NO.		Iviateriai	MHY2-10D	MHY2-16D	MHY2-20D	MHY2-25D	
17			BR MHY10-PS	MHY16-PS	MHY20-PS	MHY25-PS	
18	Seal kit	NDD					
17 18 19 20		NBK				WITT 25-P3	
20							

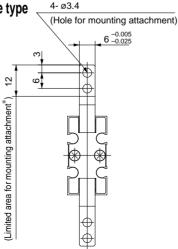

Dimensions

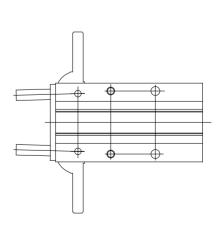

MHY2-10D



Pin hole positioning




M5 X 0.8 (Finger opening port) M5 X 0.8 (Finger opening port)


Auto switch mounting groove position

MHY2-10D2

Opening/closing direction through hole type

MHS

MHZ2

MHZJ2

MHQ

MHL2

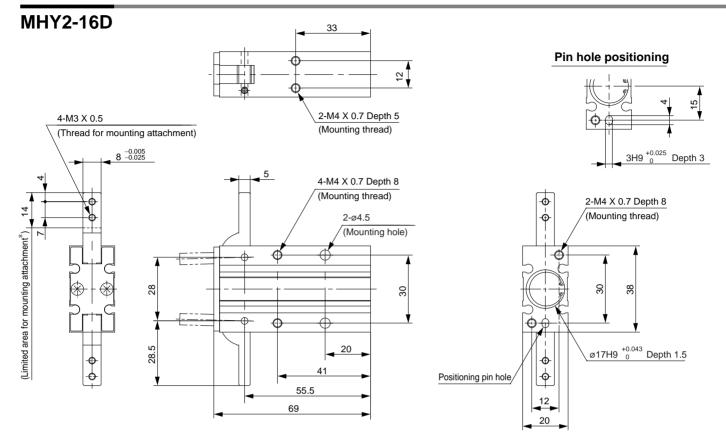
MHR

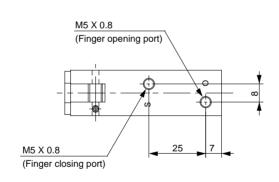
MHK

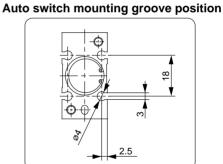
MHC2 MHT2

MHY2

MHW2

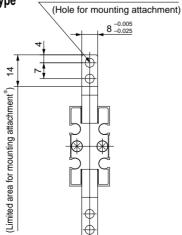

MRHQ

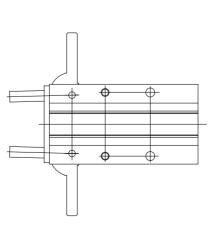

Auto switch


 Do not extend the attachment from limited area for mounting to avoid interference with the attachment or main body.

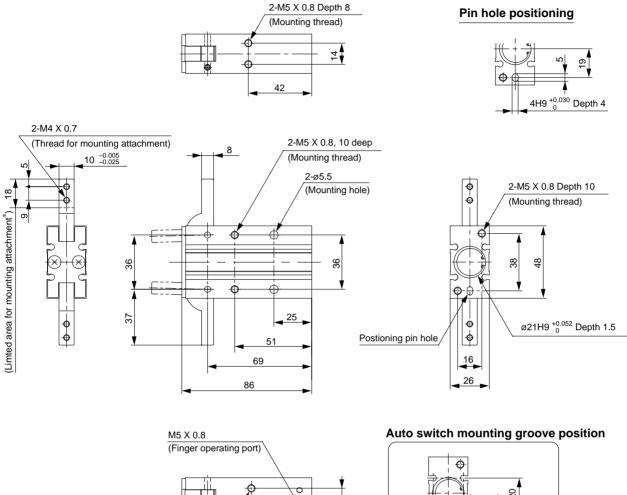
Series MHY2

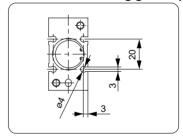

Dimensions





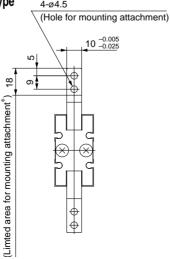
MHY2-16D2

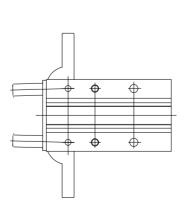



4-ø 3.4

 Do not extend the attachment from limited area for mounting to avoid interference with the attachment or main body.

MHY2-20D




MHY2-20D2

Opening/closing direction through hole type

M5 X 0.8

(Finger closing port)

* Do not extend the attachment from limited area for mounting to avoid interference with the attachment or main body.

MHZJ2

MHZ2

MHQ MHL2

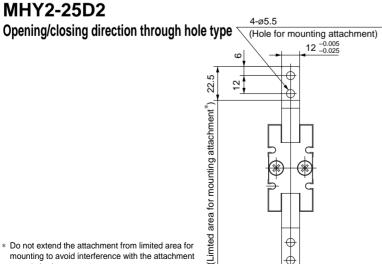
MHR

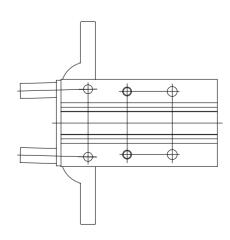
MHK

MHS

MHC2

MHT2

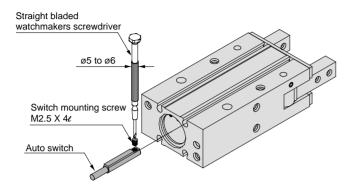

MHY2 MHW2


MRHQ

Series MHY2

Dimensions

MHY2-25D 2-M6 X 1 Depth 10 Pin hole positioning (Mounting thread) 0 50 4H9 ^{+0.030} Depth 4 4-M5 X 0.8 (Thread for mounting attachment) 10 4-M6 X 1 Depth 12 12 -0.005 (Mounting thread) 2-ø6.6 ф 2-M6 X 1 Depth 12 (Limted area for mounting attachment st) $_\perp$ 22.5 $_\perp$ (Mounting hole) (Mounting thread) 12 46 45 4 28 ø26H9 ^{+0.052} Depth 1.5 Postioning 45 30 ф pin hole Ф-18 86 30 107 Auto switch mounting groove position M5 X 0.8 (Finger operating port) Ф **4** M5 X 0.8 42 (Finger closing port)

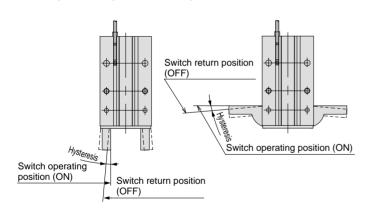


mounting to avoid interference with the attachment or main body.

180° Angular Gripper Series MHY2

Setting Method of Auto Switch

To set the auto switch, insert the auto switch into the installation groove of the gripper from the direction indicated in the following drawing. After establishing the installation position, tighten the attached switch mounting screw with a straight bladed watchmakers screwdriver.



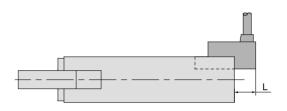
Note) Use a watchmakers screwdrivers with a grip diameter of 5 to 6 mm to tighten the auto switch mounting screw. Use a tightening torque of 0.05 to 0.1Nm. As a rough guide, tighten the screw an additional 90° after feeling a tighten resistance.

*Refer to the p.2.11-7 for the details of "Solid State Switch /Connection Method and Connection Example".

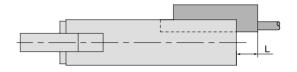
Auto Switch Hysteresis

Auto switches have a differential like a micro switch. Please refer to the following table as a guide when setting auto switch positions.

			D-F91	VW(V)	D-F9BA		
		D-F9N(V) D-F9B(V)	Red light at ON	Green light at ON	Red light at ON	Green light at ON	
MHY2	Finger fully closed	2°	2°	4°	2°	3°	
-10D	Finger fully open	4°	4°	7°	4°	5°	
MHY2	Finger fully closed	2°	2°	4°	2°	2°	
-16D	Finger fully open	3°	3°	6°	3°	4°	
MHY2	Finger fully closed	2°	2°	3°	2°	2°	
-20D	Finger fully open	3°	3°	5°	3°	3°	
MHY2	Finger fully closed	1°	1°	3°	1°	2°	
-25D	Finger fully open	2°	2°	5°	2°	3°	


Projection of Auto Switch from Body Edge

The projection of an auto switch from the edge of the body is shown in the table below. Use the table as a guideline for mounting.


Note) 2 color indicator type and perpendicular entry type protrude in the direction of the lead wire entry.

When auto switch D-F9N is used

When auto switch D-F9□V is used

When auto switch D-F9BA is used

Max. protrusion of auto switch from edge of body (L) Unit: mm

Auto switch model No.		Protrusion								
modern	10.		In-	line	Perpendicular					
Gripper Model No.		D-F9N	D-F9B	D-F9BA	D-F9NW	D-F9NV	D-F9BV	D-F9NWV		
MHY2-10D	0							L —		
WIT 12-10D	S	3	8	13	6	1	1	8		
MHY2-16D	0		L .—	L			l . 	L .—		
IVIN 12-10D	S	3	8	13	7	1	1	8		
MHY2-20D	0		L . —				L .—	L. <u>-</u>		
WH 12-20D	S	_	5	10	4	_	_	5		
MHY2-25D	0							L —		
WITH 1 2-23D	S	_	3	9	3	_	_	3		

MHZ2

MHZJ2

MHQ MHL2

MHR

MHK

MHS

MHC2

MHT2

MHY2

MRHQ