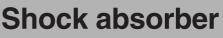


Shock Absorber Series RB/RBL/RBQ

Absorbing impact and noise

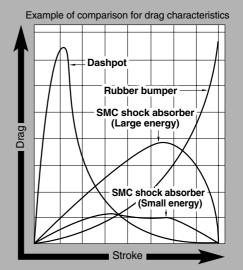
Dampening to meet the high speed requirements of the modern world.

Shock absorber: Series RB Coolant resistant type: Series RBL

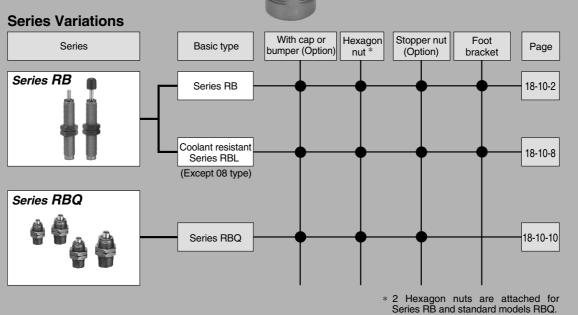

> Usable without a stopper nut The strong body can be positioned directly.

Short type: Series RBQ

A compact style that has been shortened lengthwise


Allowable eccentric angle is 5° Suitable for absorption of rotation energy.

Usable without a stopper nut The strong body can be positioned directly.



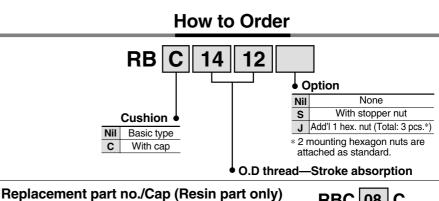
Automatic adjustment to the most appropriate absorption performance

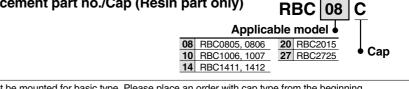
Specially designed orifice can absorb energy comprehensively and most appropriately in many different applications. This ranges from high speed low loads, to load speed high loads; without requiring additional adjustment of the shock absorber.

* Drag waveform will vary depending on the operating conditions.

SMC

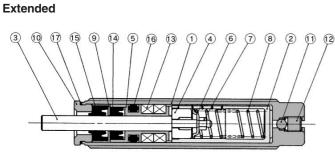
RE^A_B REC C C MQM RHC MK(2) RSG RS^H RZQ MIs CEP1 CE1 CE2 ML2B C_G^J5-S CV MVGQ CC RB J D--Х 20-Data

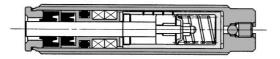

Shock Absorber Series RB


Specifications

opoomot									
Model	Basic type	RB0805	RB0806	RB1006	RB1007	RB1411	RB1412	RB2015	RB2725
Specifications	With cap	RBC0805	RBC0806	RBC1006	RBC1007	RBC1411	RBC1412	RBC2015	RBC2725
Max. energy absorption (J)		0.98	2.94	3.92	5.88	14.7	19.6	58.8	147
Stroke absorption (mm)		5	6	6	7	11	12	15	25
Collision spe	ed (m/s)				0.05	to 5.0			
Max. operating frequency * (cycle/min)		80	80	70	70	45	45	25	10
Max. allowable	thrust (N)	245	245	422	422	814	814	1961	2942
Ambient temperatur	re range (°C)		-10 to 80 (No freezing)						
Spring force	Extended	1.96	1.96	4.22	4.22	6.86	6.86	8.34	8.83
(N)	Retracted	3.83	4.22	6.18	6.86	15.30	15.98	20.50	20.01
	Basic type	15	15	23	23	65	65	150	350
Weight (g)	With cap	16	16	25	25	70	70	165	400

It denotes the values at the maximum energy absorption per one cycle.
 Max. operation cycle/min can increase in proportion to energy absorption.

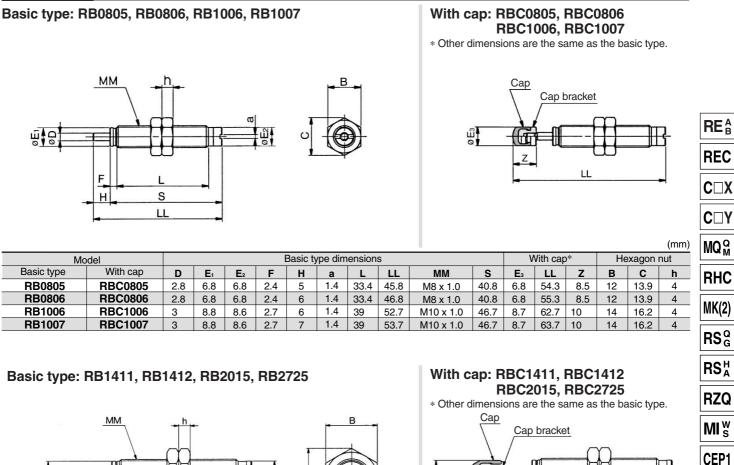


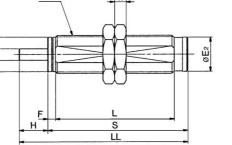


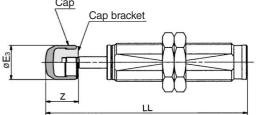
Cap cannot be mounted for basic type. Please place an order with cap type from the beginning.

Construction

Compressed

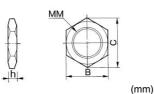

Component Parts


*₿*SMC


No.	Description	Material	Treatment
(1)	Outer tube	Rolled steel	Gray coated
2	Inner tube	Special steel	Heat treated
3	Piston rod	Special steel	Electroless nickel plated
4	Piston	Special steel	Heat treated
5	Bearing	Special bearing material	
6	Spring guide	Carbon steel	Zinc chromated
$\overline{\mathcal{O}}$	Lock ring	Copper	
8	Return spring	Piano wire	Zinc chromated
9	Seal holder	Copper alloy	
10	Stopper	Carbon steel	Zinc chromated
11	Steel ball	Bearing steel	
(12)	Set screw	Special steel	
(13)	Accumulator	NBR	Foam rubber
14)	Rod seal	NBR	
(15)	Scraper	NBR	
(16)	Gasket	NBR	
17	Gasket	NBR	Only RB(C)2015, 2725

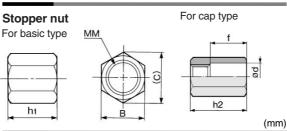
3

Dimensions



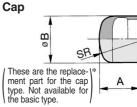
																	(mm)
Mo	odel		Basic type dimensions With cap*					He	Hexagon nut								
Basic type	With cap	D	E1	E ₂	F	н	K		LL	MM	S	E₃	LL	Z	B	C	h
RB1411	RBC1411	5	12.2	12	3.5	11	12	58.8	78.3	M14 x 1.5	67.3	12	91.8	13.5	19	21.9	6
RB1412	RBC1412	5	12.2	12	3.5	12	12	58.8	79.3	M14 x 1.5	67.3	12	92.8	13.5	19	21.9	6
RB2015	RBC2015	6	18.2	18	4	15	18	62.2	88.2	M20 x 1.5	73.2	18	105.2	17	27	31.2	6
RB2725	RBC2725	8	25.2	25	5	25	25	86	124	M27 x 1.5	99	25	147	23	36	41.6	6

Hexagon Nut


Ē

(2 pcs. standard equipment)

Part no.	Dimensions						
Fait IIU.	MM	h	В	С			
RB08J	M8 x 1.0	4	12	13.9			
RB10J	M10 x 1.0	4	14	16.2			
RB14J	M14 x 1.5	6	19	21.9			
RB20J	M20 x 1.5	6	27	31.2			
RB27J	M27 x 1.5	6	36	41.6			


Option

Par	t no.	Dimensions						
Basic type	With cap	В	С	h1	h2	MM	d	f
RB08S	RBC08S	12	13.9	6.5	23	M8 x 1.0	9	15
RB10S	RBC10S	14	16.2	8	23	M10 x 1.0	11	15
RB14S	RBC14S	19	21.9	11	31	M14 x 1.5	15	20
RB20S	RBC20S	27	31.2	16	40	M20 x 1.5	23	25
RB27S	RBC27S	36	41.6	22	51	M27 x 1.5	32	33

SMC

Replacement Parts

Material: Polyurethane (mm)

(
Part no.	D	imensio	ns			
Tarrno.	Α	В	SR			
RBC08C	6.5	6.8	6			
RBC10C	9	8.7	7.5			
RBC14C	12.5	12	10			
RBC20C	16	18	20			
RBC27C	21	25	25			
10-18-3						

CE1

CE2

ML2B

C_G^J5-S

CV

MVGQ

Series **RB**/Shock Absorber **Technical Data:**

Model Selection

Model Selection Step

			L	
1. Type	of impact		Ī	
Cylir Cylir Cylir Conv Free Free	nder stroke at load (Horiz nder stroke at load (Down nder stroke at load (Down veyor stroke at load (Upwa veyor stroke at load (Hor horizontal impact dropping impact ting impact (With torque	nward) ard) izontal)		1. Type of impa
₹ 2. Enume	eration of operating co	onditions	_	Collision spo U
Symbol	Operating condition	Unit		Kinetic en E1
m	Impacting object weight	kg	-	Thrust en
υ	Collision speed	m/sec		E2
h	Dropping height	m		Absorbed e
ω	Angle speed	rad/sec		E
r	Distance between axis of cylinder and impact point	m	(Correspond
d	Bore size	mm		weight impacting o
р	Cylinder operation pressure	MPa		Me
F	Thrust	N		
Т	Torque	N⋅m		2.
n	Operation cycle	cycle/min		Operati
t	Ambient temperature	°C		conditio
μ	Friction coefficient			
Ensure operation and atm * Be aw	that the collision spe- n cycle, the ambient the osphere fall within the spe- are of the min. installations of rotating impacts.	ed, thrust, emperature cifications.		3. Specifica and operat instructio
	lation of kinetic en ne equation suitable for the npact.			4. Calcula of kinet

In the case of cylinder stroke at load and free horizontal impact, substitute respective figures for Data A in order to calculate E1.

5. Calculation of thrust energy E2 Select any shock absorber as a provisional model In the case of thrust energy of cylinder E1,

substitute respective figures for Data B or Data C.

6. Calculation of corresponding weight of impacting object Me Absorbed energy $E = E1 + E_2$ Corresponding weight of impacting object Me = $\frac{2}{12^2} \cdot E$ Substitute both absorbed energy E and collision

speed v for Data A in order to calculate the corresponding weight of the impacting object.

7. Selection of applicable model

Taking into consideration the corresponding weight of the impacting object Me, calculated using **Data D** and collision speed v, check provisional model compatibility with the condition of application. If this is satisfactory, then the said provisional model will be the applicable one.

In order for the shock absorbers to operate accurately for long hours, it is necessary to select a model that is well-suited to your operating conditions. If the impact energy is smaller than 5% of the maximum energy absorption, select a model that is one class smaller

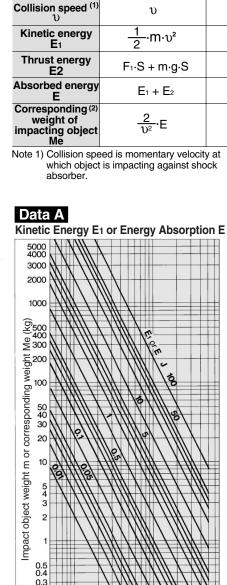
10-18-4

vLoad ct đИ Cylinder eed⁽¹⁾ υ nergy $\frac{1}{2}$ ·m·v² ergy F₁⋅S nergy E1 + E2 ding (2 $\frac{2}{1)^2} \cdot E$ m = 50 kg $\upsilon = 0.3 \text{ m/s}$

Cylinder stroke at load (Horizontal)

Shock absorbe

Selection Example


ng p = 0.5 MPa ons n = 20 cycle/min t = 25°C Confirmation of specifications υ ··· 0.3 < 5 (max.) t ··· –10 (min.) < 25 < 80 (max.) tions tional F ... F1 ...628 < 1961 (max.) ons YES • Kinetic energy E1 Use Formula to calculate E1. ation Substitute 50 for m and 0.3 for v. of kinetic E1 ≅ 2.3 J energy E1 Thrust energy E2 5.

d = 40 mm

Calculation of thrust energy E ₂	Provisionally select a model RB2015 and make the use of Data B. According to $d = 40$, E2 is obtained.
6. Calculation of corresponding weight of impacting object Me	• Corresponding weight of impacting object Me Use the formula "Absorbed energy $E = E_1 + E_2 = 2.3 + 9.4 = 11.7 J$ " to calculate Me. Substitute 11.7 J for E and 0.3 for v. Me \cong 260 kg
	Selection of applicable model

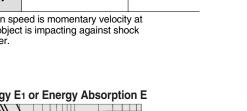
According to Data D, the tentatively selected RB2015 satisfies Me = 260 kg < 400 kg at v = 0.3. Ultimately, it will result in an operat-Selection of ing frequency of n...20 < 25, with-out causing a problem. applicable model YES

Select RB2015

0.2

0.1

0.05 0.1


0.2 0.3 0.40.5

Collision speed v (m/s)

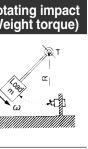
2 3 4 5

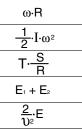
1. Type of Imp	act				
	Cylinder stroke at load (Downward)	Cylinder stroke at load (Upward)	Conveyor stroke at load (Horizontal)	Free dropping impact	Rot (We
Type of impact	F₁ Cylinder	v Load v Load F₁ Cylinder		Load m v	
Collision speed ${}^{(1)}_{U}$	υ	υ	υ	$\sqrt{2 \text{ gh}}$	
Kinetic energy E1	$\frac{1}{2}$ ·m·v ²	$\frac{1}{2}$ ·m·v ²	$\frac{1}{2}$ ·m·v ²	m∙g∙h	
Thrust energy E2	F₁⋅S + m⋅g⋅S	$F_1 \cdot S - m \cdot g \cdot S$	m⋅g⋅μ⋅S	m⋅g⋅S	
Absorbed energy E	E1 + E2	E1 + E2	E1 + E2	E1 + E2	
Corresponding ⁽²⁾ weight of impacting object	<u>2</u> .E	 $\frac{2}{v^2} \cdot E$	$\frac{2}{v^2} E$	$\frac{2}{v^2} E$	

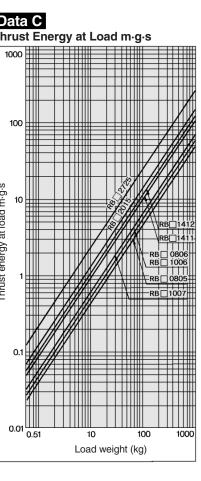
Note 1) Collision speed is momentary velocity at which object is impacting against shock

Note 2) An "Impact body equivalent weight" is the weight of an impact object without involving thrust, into which an object's total energy has been converted.), refer to the catalog of rotary actuator. Hence, $E = \frac{1}{2} \cdot Me \cdot U^2$

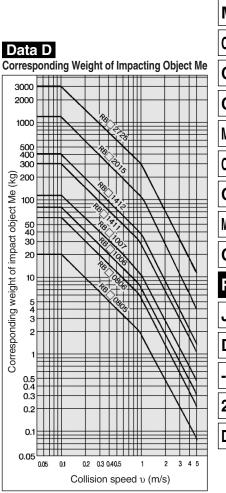
Note 3) For the formula of moment of inertia I (kg·m²), refer to the catalog of rotary actuator.

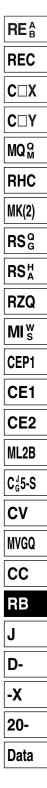

Μ	odel		RB⊡0806 RB⊡1006		RB□ 1411	RB⊡ 1412	RB□ 2015	RB□ 2725	1000
	absorption nm)	5	6	7	11	12	15	25	
	6	0.071	0.085	0.099	0.156	0.170	0.212	0.353	
	10	0.196	0.236	0.274	0.432	0.471	0.589	0.982	100
	15	0.442	0.530	0.619	0.972	1.06	1.33	2.21	
	20	0.785	0.942	1.10	1.73	1.88	2.36	3.93	
	25	1.23	1.47	1.72	2.70	2.95	3.68	6.14	
	30	1.77	2.12	2.47	3.89	4.24	5.30	8.84	0
e	40	3.14	3.77	4.40	6.91	7.54	9.42	15.7	
Ē	50	4.91	5.89	6.87	10.8	11.8	14.7	24.5	Thrust energy at load m⋅g⋅s
size d (mm)	63	7.79	9.35	10.9	17.1	18.7	23.4	39.0	loa
siz	80	12.6	15.1	17.6	27.6	30.2	37.7	62.8	y at
Bore	100	19.6	23.6	27.5	43.2	47.1	58.9	98.2	erg
۳	125	30.7	36.8	43.0	67.5	73.6	92.0	153	t en
	140	38.5	46.2	53.9	84.7	92.4	115	192	Inus
	160	50.3	60.3	70.4	111	121	151	251	È
	180	63.6	76.3	89.1	140	153	191	318	
- H	200	78.5	94.2	110	173	188	236	393	
	250	123	147	172	270	295	368	614	0.
	300	177	212	247	389	424	530	884	




7.

Shock Absorber Series RB


Symbol



Symi	100	
Symbol	Specifications	Unit
d	Bore size	mm
E	Absorbed energy	J
E1	Kinetic energy	J
E2	Thrust energy	J
F1	Cylinder thrust	Ν
g	Acceleration of gravity (9.8)	m/s²
h	Dropping height	m
I (3)	Moment of inertia around the center of gravity	kg∙m²
n	Operating frequency	cycle/min
р	Cylinder operation pressure	MPa
R	Distance between axis of cylinder and impact point	m
S	Shock absorber stroke	m
Т	Torque	N∙m
t	Ambient temperature	°C
υ	Collision speed	m/s
m	Impact object weight	kg
Ме	Corresponding weight of impact object	kg
ω	Angle speed	rad/s
μ	Friction coefficient	_

Precautions

-----_____ Be sure to read before handling. Refer to pages 10-24-3 to 10-24-6 for Safety Instructions and Actuator Precautions.

Selection

\land Danger

- 1. Energy absorption
- Select a model so that the aggregated energy of impact object should not exceed the maximum absorption energy. Otherwise, it could cause changes in properties or result in damaging the shock absorber. 2. Corresponding weight of impacting object
- Make a model selection, so that the corresponding weight of impacting object does not exceed the allowable range. Pulsation will occur in buffer and deceleration force, thus making it difficult to absorb shock smoothly.
- 3. Collision speed
- Use it in the conditions that collision speed is within the specified range. It could cause the changes in buffer characteristics or lead to damage a shock absorber

/ Warning

1. Static load

Design the system, so that any other forces than the buffer capacity or impacts should not be applied to the piston rod which is stopped at the retracted state.

A Caution

1. Maximum operating frequency

Design the system in the conditions under which it is not used at the frequency exceeding the specified maximum operating frequency. (But, the maximum operating frequency will vary depending on the absorbed energy.)

- 2. Stroke
- The maximum absorption energy in the specifications cannot be exerted unless the full stroke is used for both Series RB and RBL.
- 3. Work surface of an impact object
- The contact surface of the impact object with which the piston rod comes into contact must be highly rigid.

In the case without a cap, a high surface compression load is applied to the contact surface of the impact body with which the piston rod comes into contact. Therefore, the contact surface must be highly rigid (hardness of HRC35 or more).

4. Be aware of the return force of the impact object.

If used in a conveyor drive, after the shock absorber has absorbed energy, it could be pushed back by the spring that is built-in. For the spring force in the specifications, refer to the column (page 10-18-2).

5. Selection of size

As the number of operation proceeds, the maximum absorption energy of shock absorbers will be decreased by the following reasons such as abrasion, or deterioration, etc. of the internal working fluid. Taking this into consideration, selecting a size which is 20 to 40% affordable against the amount of absorption energy is recommended.

6. Drag characteristics

In general, the values of drag (reactive force generated during operation) generated by the operating speed will vary in hydraulic shock absorber. And then, by adopting "Porous orifice construction", the RB series can adapt to such this fast/slow speed and can absorb shock smoothly in a wide range of speed.

But, the speed reduction (speed reduction G) would be larger around the stroke terminal, depending upon the operating conditions. Please note that it might be encountered that stroke time is long, motion is not smooth, etc. If this would be a problem, we recommend that stroke amount should be restricted by using our optional component like Stopper nut", etc.

Including this case, if the data on operational status (stroke time, reactive force, deceleration, etc.) are required, please consult with SMC.

Operating Environment

🗥 Danger

1. Operation in an environment which requires explosion-proof

- When mounting in places where static electricity is accumulated, implement a distribution of electrical energy by grounding.
 Do not use the materials for buffer face which might cause to spark by
- collision.

🗥 Warning

1. Pressure

Do not use it in the vacuum state, which is substantially different from the atmospheric pressure (above sea level) and in the atmosphere under being pressurized.

2. Using inside a clean room

Do not use the shock absorber in a clean room, as it could contaminate the clean room

A Caution 1. Temperature range

Do not use it, exceeding the specified allowable temperature range. Seal could be softened or hardened or worn out, or leading to leak a working fluid, deterioration, or impact characteristic changes.

2. Deterioration by atmosphere

Do not use in an atmosphere such as salt damage, sulfurous acid gas which makes the metal corroded, or having solvent, etc. which makes seal deteriorated.

3. Deterioration by ozone

Do not use it under the direct sunlight on the beach, or by the mercury lamp, or the ozone generator, because the rubber material will be deteriorated by ozone.

4. Cutting oil, water, blown dust

Do not use the product under the condition, where the liquid such as cutting oil, water, blown dust, solvent, etc. is exposed either directly or in atomized form to the piston rod, or where blown dust could be adhered around the piston rod. This could cause malfunction.

Vibration

When vibrations are applied on impact objects, implement a secure guide on impact objects

Mounting

🗥 Warning

- 1. Before performing installation, removal, or stroke adjustment, make sure to cut the power supply to the equipment and verify that the equipment has stopped.
- 2. Installation of protective cover
- We recommend the protective cover should be installed in the case workers might be getting close during the operation.
- 3. The rigidity of the mounting frame must be taken into consideration If the mounting frame lacks strength, the shock absorber will vibrate after an impact, causing bearing wear and damage Load on mounting plate can be calculated as follows.

Load on mounting plate $N \equiv 2 \frac{E \text{ (Absorbed energy J)}}{2 \sqrt{2}}$

🗥 Warning

- 1. Tightening torque of mounting nut should be as follows.
- When threading on a mounting frame in order to mount a shock absorber directly, prepared hole dimensions are referred to the table below.

For tightening torque of a nut for shock absorber, kindly abide by the table below.

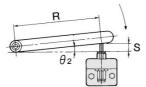
If the tightening torque that is applied to the nut exceeds the value given below, the shock absorber itself could become damaged.

Model	RB(C)0805 RB(C)0806	RB(C)1006 RB(C)1007	RB(C)1411 RB(C)1412	RB(C)2015	RB(C)2725
O.D. thread (mm)	M8 x 1.0	M10 x 1.0	M14 x 1.5	M20 x 1.5	M27 x 1.5
Thread prepared bore (mm)	ø7.1 ^{+ 0.1}	ø9.1 ^{+ 0.1}	ø12.7 ^{+ 0.1}	ø18.7 ^{+0.1}	ø25.7 +0.1 0
Tightening torque (N⋅m)	1.67	3.14	10.8	23.5	62.8

2. Deviation of impact

The installation must be designed so that the impact body is perpendicular to the shock absorber's axial center. An angle of deviation that exceeds 3° will place an excessive load on the bearings, leading to oil leaks within a short period of operation.

Allowable eccentric angle $\theta_1 < 3^\circ$


A Precautions

Be sure to read before handling. Refer to pages 10-24-3 to 10-24-6 for Safety Instructions and Actuator Precautions.

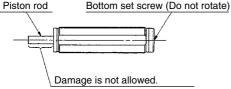
(mm)

Mounting

3. Rotating angle If rotating impacts are involved, the installation must be designed so that the direction in which the load is applied is perpendicular to the shock absorber's axial center. The allowable rotating angle until the stroke end must be $\theta_2 < 3^{\circ}$.

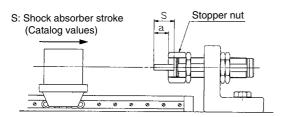
Allowable rotating eccentric angle $\theta_2 < 3^\circ$

Installation Conditions for Rotating Impact


Model	S (Stroke)	Hallowable rotating angle)	R (Min. installation radius)
RB□□0805	5		96
RB □ 0806	6		115
RB□□1006	6		115
RB□□1007	7	3°	134
RB□□1411	11	Ŭ	210
RB□□1412	12		229
RB□□2015	15		287
RB□□2725	25		478

4. Do not scratch the sliding portion of the piston rod or the outside threads of the outer tube.

Failure to observe this precaution could scratch or gouge the sliding potion of the piston rod, or damage the seals, which could lead to oil leakage and malfunction. Furthermore, damage to outside threaded portion of the outer tube could prevent the shock absorber from being mounted onto the frame, or its internal components could deform, leading to a malfunction.


5. Never turn the screw on the bottom of the body.

This is not an adjusting screw. Turning it could result in oil leakage.

6. Adjust the stopping time through the use of the stopper nut, as follows:

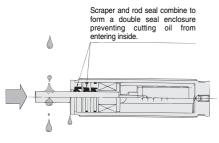
Control the stopping time of the impact object by turning the stopper nut in or out (thus changing length "a"). After establishing the stopper nut position, use a hexagon nut to secure the stopper nut in place.

Maintenance

▲ Caution

1. Check the mounting nut is not loosen.

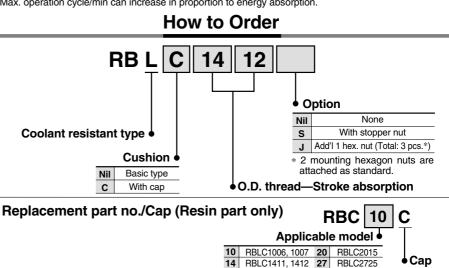
- The shock absorber could become damaged if it is used in a loose state. **2. Pay attention to any abnormal impact sounds or vibrations.** If the impact sounds or vibrations have become abnormally high, the
- If the impact sounds or vibrations have become abnormally high, the shock absorber may have reached the end of its service life. If this is the case, replace the shock absorber. If use is continued in this state, it could lead to equipment damage.
- 3. Confirm that abnormality, oil leakage, etc. in the outward surface. When a large amount of oil is leaking, replace the product, because it is believed to be happening something wrong with it. If it keeps on using, it may cause to break the equipment which is mounted by this product.


4. Inspect the cap for any cracks or wear. If the shock absorber comes with a cap, the cap could wear first. To

If the shock absorber comes with a cap, the cap could wear first. To prevent damage to the impact object, replace the cap often.

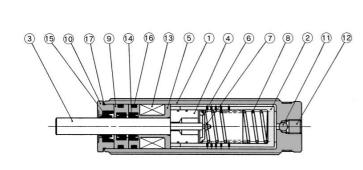
Shock Absorber: Coolant Resistant Type Series RBL

Can be operated in an environments exposed to non-water soluble cutting oil. (Mainly JIS Class 1 equivalent)


Specifications

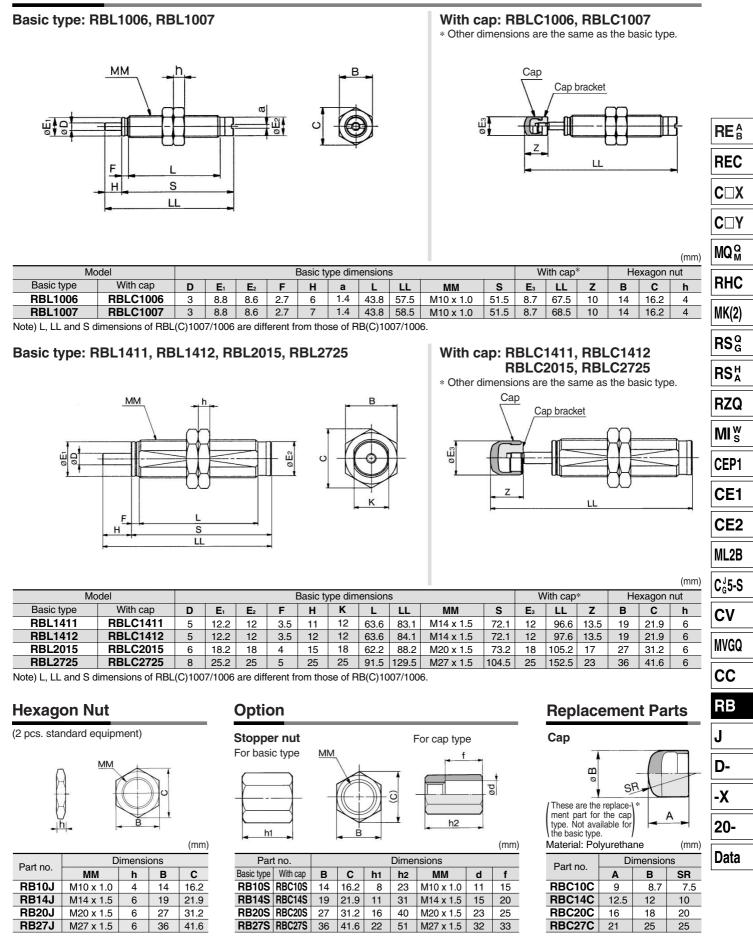
Mode	el Basic type	RBL1006	RBL1007	RBL1411	RBL1412	RBL2015	RBL2725
Specifications	With cap	RBLC1006	RBLC1007	RBLC1411	RBLC1412	RBLC2015	RBLC2725
Max. energy al	osorption (J)	3.92	5.88	14.7	19.6	58.8	147
Stroke absorp	tion (mm)	6	7	11	12	15	25
Collision spee	d (m/s)	0.05 to 5					
Max. operating freque (cycle/min)	ency*	70	70	45	45	25	10
Max. allowable thrust (N)		422	422	814	814	1961	2942
Allowable tempera	ture range (°C)			-10	to 80		
Effective atmo	sphere		Ν	lon-water sol	uble cutting o	il	
Spring force	Extended	4.22	4.22	8.73	8.73	11.57	22.16
(N)	Retracted	6.18	6.86	14.12	14.61	17.65	38.05
Mainht (a)	Basic type	26	26	70	70	150	365
Weight (g)	With cap	28	28	75	75	165	410
* It denotes the values at the maximum energy absorption per one cycle.							

Max. operation cycle/min can increase in proportion to energy absorption.


Basic type

Cap cannot be mounted for basic type. Please place an order with cap type from the beginning.

Construction

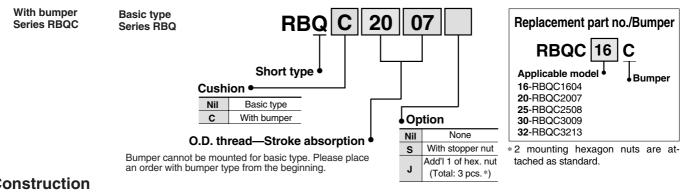


Component Parts No. Description Material Treatment Outer tube Rolled steel Gray coated 1 Inner tube Special steel Heat treated 2 Piston rod Electroless nickel plated 3 Special steel Special steel Heat treated Piston (4) Bearing Special bearing material (5) Carbon steel Zinc chromated (6) Spring guide \overline{O} Lock ring Copper (8) Return spring Piano wire Zinc chromated Seal holder Copper alloy 9 Stopper Carbon steel Zinc chromated (10) 1 Steel ball Bearing steel Set screw Special steel 12 Accumulator NBR Foam rubber 13 Rod seal NBR (14) Scraper NBR (15) Gasket NBR (16) Only RBL(C)2015, 2725 Gasket NBR 17

Dimensions

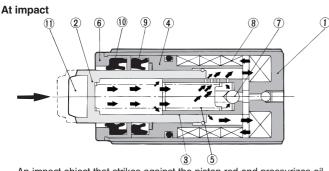
Shock Absorber: Short Type Series RBQ

Allowable eccentric angle is 5°


Ideal for absorption of rotating energy

Specifications

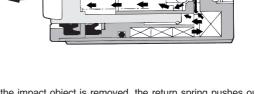
Model	Basic type	RBQ1604	RBQ2007	RBQ2508	RBQ3009	RBQ3213
Specifications	With bumper	RBQC1604	RBQC2007	RBQC2508	RBQC3009	RBQC3213
Max. energy abso	orption (J)	1.96	11.8	19.6	33.3	49.0
Stroke absorption	(mm)	4	7	8	8.5	13
Collision speed (r	n/s)			0.05 to 3		
Max. operating frequency * (cycle/min)		60	60	45	45	30
Max. allowable thrust (N)		294	490	686	981	1177
Ambient temperat	ture (C°)			-10 to 80		
a i i i i	Extended	6.08	12.75	15.69	21.57	24.52
Spring force (N)	Retracted	13.45	27.75	37.85	44.23	54.23
Weight (g)		28	60	110	182	240
Option/Stopper nut		RBQ16S	RB20S	RBQ25S	RBQ30S	RBQ32S


* It denotes the values at the maximum energy absorption per one cycle. Therefore, the operating frequency can be increased according to the energy absorption.

How to Order

At returning

Construction

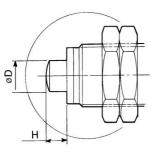


An impact object that strikes against the piston rod end pressurizes oil inside the piston. Thus, pressurized oil jets out through the orifice inside the piston, thereby generating hydraulic resistance to absorb

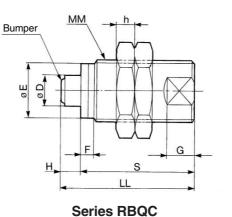
the energy of the impacting object. The oil jetted out through the orifice is collected inside the outer tube by means of the stretching action of the accumulator.

Component Parts

No.	Description	Material	Treatment
1	Outer tube	Rolled steel	Black nickel plated
2	Piston rod	Special steel	Heat treated, Hard chrome plated
3	Piston	Special steel	Heat treated
4	Bearing	Special bearing material	
5	Return spring	Piano wire	Zinc chromated
6	Stopper	Carbon steel	Zinc chromated

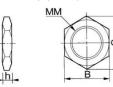


When the impact object is removed, the return spring pushes out the piston rod, and negative pressure, generated at the same time, opens the check ball to permit oil to return to the shock absorber ready for the next impact.


No.	Description	Material	Treatment
7	Check ball	Bearing steel	
8	Accumulator	Fluoro rubber	Foam rubber
9	Rod seal	NBR	
10	Scraper	NBR	
11	Bumper	Polyurethane	Only with bumper

Dimensions

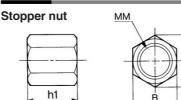
Series RBQ **Basic type**



В

With bumper Model Shock absorber Hexagon nut With bumper Basic type LL ММ D Е F G s в С н κ **RBQ1604 RBQC1604** 3.5 31 M16 x 1.5 6 14.2 7 27 22 25.4 4 14 **RBQ2007 RBQC2007** 10 18.2 4 7 18 9 44.5 M20 x 1.5 37.5 27 31.2 **RBQ2508 RBQC2508** 52 12 23.2 4 8 23 10 M25 x 1.5 44 32 37 **RBQ3009 RBQC3009** 16 28.2 5 8.5 28 12 61.5 M30 x 1.5 53 41 47.3 **RBQ3213 RBQC3213** 30.2 18 5 13 30 13 76 M32 x 1.5 63 41 47.3

Hexagon Nut


(2 pcs. standard equipment)

				(mm)
Part no.	MM	h	В	С
RBQ16J	M16 x 1.5	6	22	25.4
RB20J (1)	M20 x 1.5	6	27	31.2
RBQ25J	M25 x 1.5	6	32	37
RBQ30J	M30 x 1.5	6	41	47.3
RBQ32J	M32 x 1.5	6	41	47.3

Note 1) In the case of RB20J, RB and RBQ are common.

Option

Material: Carbo	(mm)			
Part no.	В	С	h1	MM
RBQ16S	22	25.4	12	M16 x 1.5
RB20S (2)	27	31.2	16	M20 x 1.5
RBQ25S	32	37	18	M25 x 1.5
RBQ30S	41	47.3	20	M30 x 1.5
RBQ32S	41	47.3	25	M32 x 1.5

Note 2) In the case of RB20S, RB and RBQ are common.

Bumper

(These are the replace-)* ment part for the cap type. Not available for	A	°C
type. Not available for the basic type.		

Material: Polyur	(mm)		
Part no.	Α	В	С
RBQC16C	3.5	4	4.7
RBQC20C	4.5	8	8.3
RBQC25C	5	8.3	9.3
RBQC30C	6	11.3	12.4
RBQC32C	6.6	13.1	14.4

RE^A_B

REC

C \

CUY

MQM

RHC

MK(2)

RSG

RS^H

RZQ

MI_s

CEP1

(mm)

h

6

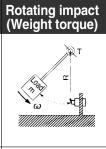
6

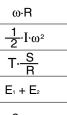
6

6

Series RBQ/Shock Absorber: Short Type Technical Data:

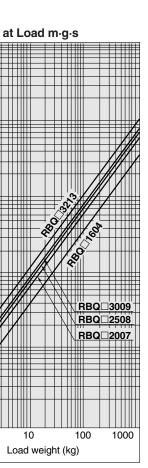
Model Selection


Nodel Selection Step	Selection	Example	1. Type of Impa					
■ Cylinder stroke at load (Horizontal)		Cylinder stroke at load (Horizontal)		Cylinder stroke at load (Downward)		Conveyor stroke at load (Horizontal)	Free dropping impact	F (
 Cylinder stroke at load (Horizontal) Cylinder stroke at load (Downward) Cylinder stroke at load (Upward) Conveyor stroke at load (Horizontal) Free dropping impact Rotating impact (With torque) 	1. Type of impact	Shock absorber	Type of impact	F_i Cylinder Load v	ν Load m F₁ Cylinder			
Enumeration of operating conditions		υ						L
Symbol Operating conditions Unit m Impacting object weight kg	Kinetic energy E1	$\frac{1}{2}$ ·m·v ²	Collision speed $\overset{(1)}{\mathcal{V}}$	υ	υ	υ	$\sqrt{2 \text{ gh}}$	
υ Collision speed m/sec	Thrust energy E2	Fı⋅S	Kinetic energy E1	$\frac{1}{2}$ ·m·v ²	$\frac{1}{2}$ ·m·v ²	$\frac{1}{2}$ ·m·v ²	m∙g∙h	
h Dropping height m ω Angle speed rad/sec	Absorbed energy E	E1 + E2	Thrust energy E2	Fı⋅S + m⋅g⋅S	F₁·S – m·g·S	m⋅g⋅μ⋅S	m⋅g⋅S	
r Distance between axis of cylinder and impact point m d Bore size mm D Odirador constituto processor MD	Corresponding ⁽²⁾ weight of impacting object Me	<u>2</u> <u>∪</u> 2·E	Absorbed energy E	E1 + E2	E ₁ + E ₂	E1 + E2	E ₁ + E ₂	
p Cylinder operation pressure MPa F Thrust N T Torque N·m	2.	m = 20 kg v = 0.7 m/s	Corresponding ⁽²⁾ weight of impacting object Me	<u>-2</u> .·E	$\frac{2}{\upsilon^2}E$	<u>2</u> .E	<u>2</u> .E	
n Operation cycle cycle/min t Ambient temperature °C μ Friction coefficient —	Operating conditions	d = 40 mm p = 0.5 MPa n = 20 cycle/min t = 25°C	Note 1) Collision spec	ed is momentary velocity at is impacting against shock	thrust, into whi rotary actuator.	dy equivalent weight" is t ch an object's total energy Hence, $E = \frac{1}{2} \cdot Me \cdot U^2$	gy has been converted.),
Specifications and operational instructions Ensure that the collision speed, thrust, operation cycle, the ambient temperature and atmosphere fall within the specifications. * Be aware of the min. installation radius in the case of rotating impacts.	and operational instructions	• Confirmation of specifications υ ··· 0.7 < 3 (max.) t ··· -10 (min.) < 25 < 80 (max.) F ··· F1 ··628 < 686 (max.) YES • Kinetic energy E1	5000 4000 3000	or Energy Absorption E	Data B (Op Thrust Energy of C Model RBQ F 1604 Stroke absorption	of moment of inertia I (kg erating pressure 0.5 MPa Cylinder F1·S (J BQC RBQC RBQC RBQC 2007 2058 3009 3213 7 8 8.5 13	Data C Thrust Energy	at
Using the equation suitable for the classification of impact. In the case of cylinder stroke at load and free horizontal impact, substitute respective figures for Data A in order to calculate E1.		Use Formula to calculate E1. Suitable 20 for m and 0.7 for υ . E1 \cong 4.9 J	2000 1000		(mm) 7 6 0.057 10 0.157 15 0.353	0.099 0.113 0.120 0.184 0.274 0.314 0.334 0.511 0.619 0.707 0.751 1.15	-	
Calculation of thrust energy E2 Select any shock absorber as a provisional model. In the case of thrust energy of cylinder E2, substitute respective figures for Data B or Data C.	5. Calculation of thrust energy E ₂	• Thrust energy E2 Provisionally select a model RBQ2508 and make the use of Data B. According to d = 40, E2 is obtained. E2 \cong 5.0 J	e 400 300 200 100		20 0.628 25 0.982 30 1.41 40 2.51 50 3.93	1.10 1.26 1.34 2.04 1.72 1.96 2.09 3.19 2.47 2.83 3.00 4.59 4.40 5.03 5.34 8.17 6.87 7.85 8.34 12.8	(s6) bg 10	
Calculation of corresponding weight of impacting object Me Absorbed energy $E = E_1 + E_2$	6. Calculation of	• Corresponding weight of impacting object Me	50 40 30		D 63 6.23 No 80 10.1	10.912.513.220.317.620.121.432.7	at o	
Corresponding weight of impacting object Me = $\frac{2}{v^2} \cdot E$ Substitute both absorbed energy E and collision	corresponding weight of	Use the formula "Absorbed ener- gy E = E1 + E2 = $4.9 + 5.0 = 9.9$ J" to calculate Me. Substitute 9.9 J for E and 0.7 for v.	mpact object weight m or correspondent object weight m or correspondent to the		^й 125 24.5	27.5 31.4 33.4 51.1 43.0 49.1 52.2 79.8 53.9 61.6 65.4 100	Lhrust energy	
speed υ for Data A in order to calculate the corresponding weight of the impacting object.	impacting object Me	$Me \cong 40 \text{ kg}$	pject v		160 40.2	70.4 80.4 85.5 131		1
Selection of applicable model Taking into consideration the corresponding weight of the impacting object Me, calculated using Data D and collision speed v, check provisional model compatibility with the condition of application. If this is satisfactory,	7. Selection of	• Selection of applicable model According to Data D, the tentative- ly selected RBQ2508 satisfies Me = 40 kg < 60 kg at v = 0.7. Ul- timately, it will result in an operat- ing frequency of n30 < 45, with-	0.5		200 62.8 250 98.2 300 141 2	89.1 102 108 165 10 126 134 204 72 196 209 319 47 283 300 459	0.1	7
then the said provisional model will be the applicable one. Caution on Selection	applicable model	out causing a problem. YES	0.3		Multiply by the fo	re other than 0.5 MPa llowing coefficient.	-	
order for the shock absorbers to operate curately for long hours, it is necessary to lect a model that is well-suited to your		Select RBQ2508	0.05 0.1	0.2 0.3 0.4 0.5 1 2 3 sion speed υ (m/s)	(MPa) 1 0.2	0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.6 0.8 1.0 1.2 1.4 1.6 1.8	0.01	1

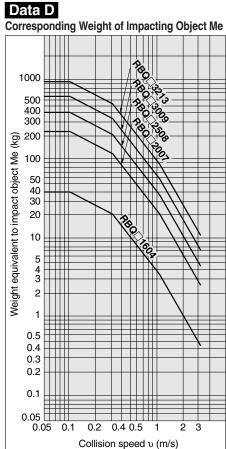

smaller

Shock Absorber: Short Type Series RBQ

Symbol



$$\frac{2}{v^2} \cdot E$$


object without involving I.), refer to the catalog of

g of rotary actuator.

Sym	001	
Symbol	Specifications	Unit
d	Bore size	mm
Е	Absorbed energy	J
E1	Kinetic energy	J
E2	Thrust energy	J
F1	Cylinder thrust	Ν
g	Acceleration of gravity (9.8)	m/s²
h	Dropping height	m
I ⁽³⁾	Moment of inertia around the center of gravity	kg∙m²
n	Operating frequency	cycle/min
р	Cylinder operation pressure	MPa
R	Distance between axis of cylinder and impact point	m
S	Shock absorber stroke	m
Т	Torque	N∙m
t	Ambient temperature	°C
υ	Collision speed	m/s
m	Impact object weight	kg
Ме	Corresponding weight of impact object	kg
ω	Angle speed	rad/s
μ	Friction coefficient	_

10-18-13

RE^AB

REC

C □ X

Precautions

Be sure to read before handling. Refer to pages 10-24-3 to 10-24-6 for Safety Instructions and Actuator Precautions.

Selection

🗥 Danger

1. Energy absorption Select a model so that the aggregated energy of impact object should not exceed the maximum absorption energy. Otherwise, it could cause changes in properties or result in damaging the shock absorber.

2. Corresponding weight of impacting object Make a model selection, so that the corresponding weight of impacting object does not exceed the allowable range. Pulsation will occur in buffer and deceleration force, thus making it difficult to absorb shock smoothly. Collision speed

Use it in the conditions that collision speed is within the specified range. It could cause the changes in buffer characteristics or lead to damage a shock absorber.

/ Warning

Static load

Design the system, so that any other forces than the buffer capacity or impacts should not be applied to the piston rod which is stopped at the retracted state.

/ Caution

Maximum operating frequency Design the system in the conditions under which it is not used at the frequency exceeding the specified maximum operating frequency. (But, the maximum operating frequency will vary depending on the absorbed energy.)

2. Stroke

The maximum absorption energy in the specifications cannot be exerted unless the full stroke is used.

3. Work surface of an impact object

The contact surface of the impact object with which the piston rod comes into contact must be highly rigid.

In the case without a cap, a high surface compression load is applied to the contact surface of the impact body with which the piston rod comes into contact. Therefore, the contact surface must be highly rigid (hardness of HRC35 or more)

4. Be aware of the return force of the impact object.

If used in a conveyor drive, after the shock absorber has absorbed energy, it could be pushed back by the spring that is built-in. For the spring force in the specifications, refer to the column (page 10-18-10).

5. Selection of size

As the number of operation proceeds, the maximum absorption energy of shock absorbers will be decreased by the following reasons such as abrasion, or deterioration, etc. of the internal working fluid. Taking this into consideration, selecting a size which is 20 to 40% affordable against the amount of absorption energy is recommended.

6. Drag characteristics

In general, the values of drag (reactive force generated during operation) generated by the operating speed will vary in hydraulic shock absorber. and then, by adopting "Porous orifice construction", the RB series can adapt to such this fast/slow speed and can absorb shock smoothly in a wide range of speed.

But, the speed reduction (speed reduction G) would be larger around the stroke terminal, depending upon the operating conditions. Please note that it might be encountered that stroke time is long, motion is not smooth, etc. If this would be a problem, we recommend that stroke amount should be restricted by using our optional component like "Stopper nut", etc.

Including this case, if the data on operational status (stroke time, reactive force, deceleration, etc.) are required, please consult with SMC.

Operating Environment

🗥 Danger

1. Operation in an environment which requires explosion-proof

- When mounting in places where static electricity is accumulated, implement a distribution of electrical energy by grounding. • Do not use the materials for buffer face which might cause to spark by
- collision.

🗥 Warning

Pressure

Do not use it in the vacuum state, which is substantially different from the atmospheric pressure (above sea level) and in the atmosphere under being pressurized.

- 2. Using inside a clean room
 - Do not use the shock absorber in a clean room, as it could contaminate the clean room

\land Caution

1. Temperature range

Do not use it, exceeding the specified allowable temperature range. Seal could be softened or hardened or worn out, or leading to leak a working fluid, deterioration, or impact characteristic changes.

2. Deterioration by atmosphere

Do not use in an atmosphere such as salt damage, sulfurous acid gas which makes the metal corroded, or having solvent, etc. which makes seal deteriorated.

3. Deterioration by ozone

Do not use it under the direct sunlight on the beach, or by the mercury lamp, or the ozone generator, because the rubber material will be deteriorated by ozone.

4. Cutting oil, water, blown dust

Do not use the product under the condition, where the liquid such as cutting oil, water, blown dust, solvent, etc. is exposed either directly or in atomized form to the piston rod, or where blown dust could be adhered around the piston rod. This could cause malfunction.

5. Vibration

When vibrations are applied on impact objects, implement a secure guide on impact objects.

Mounting

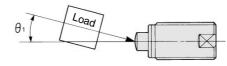
\land Warning

- 1. Before performing installation, removal, or stroke adjustment, make sure to cut the power supply to the equipment and verify that the equipment has stopped.
- 2. Installation of protective cover
- We recommend the protective cover should be installed in the case workers might be getting close during the operation.
- 3. The rigidity of the mounting frame must be taken into consideration If the mounting frame lacks strength, the shock absorber will vibrate after an impact, causing bearing wear and damage. Load on mounting plate can be calculated as follows.

Load on mounting plate $N \cong 2 \frac{E \text{ (Absorbed energy J)}}{E (2)}$

Warning

1. Tightening torque of mounting nut should be as follows.


When threading on a mounting frame in order to mount a shock absorber directly, prepared hole dimensions are referred to the table below. For tightening torque of a nut for shock absorber, kindly abide by the table helow

If the tightening torque that is applied to the nut exceeds the value given below, the shock absorber itself could become damaged.

Model	RBQ(C)1604	RBQ(C)2007	RBQ(C)2508	RBQ(C)3009	RBQ(C)3213
O.D. thread (mm)	M16 x 1.5	M20 x 1.5	M25 x 1.5	M30 x 1.5	M32 x 1.5
Thread prepared bore (mm)	ø14.7 +0.1 0	ø18.7 ^{+ 0.1}	ø23.7 +0.1 0	ø28.7 +0.1 0	ø30.7 +0.1 0
Tightening torque (N⋅m)	14.7	23.5	34.3	78.5	88.3

2. Deviation of impact

The installation must be designed so that the impact body is perpendicular to the shock absorber's axial center. An angle of deviation that exceeds 5° will place an excessive load on the bearings, leading to oil leaks within a short period of operation.

Allowable eccentric angle $\theta_1 < 5^{\circ}$

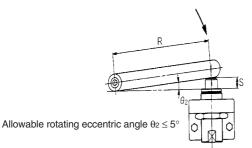
RE^A

REC

C⊡X

C□Y

APrecautions

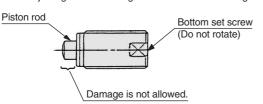

Be sure to read before handling. Refer to pages 10-24-3 to 10-24-6 for Safety Instructions and Actuator Precautions.

3. Rotating angle

If rotating impacts are involved, the installation must be designed so that the direction in which the load is applied is perpendicular to the shock absorber's axial center.

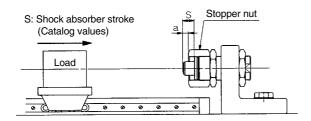
Mounting

The allowable rotating eccentric angle until the stroke end must be $\theta_2 \leq 5^\circ.$


Installation Conditions for Rotating Impact (mm)

Model	S (Stroke)	θ ₂ (Allowable rotating angle)	R (Min. installation radius)		
RBQ□1604	1604 4		46		
RBQ[]2007	7		80 92		
RBQ[]2508	8	5°			
RBQ[]3009	8.5		98		
RBQ[]3213	13		149		

4. Do not scratch the sliding portion of the piston rod or the outside threads of the outer tube.

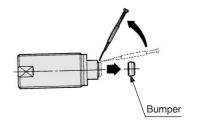

Failure to observe this precaution could scratch or gouge the sliding potion of the piston rod, or damage the seals, which could lead to oil leakage and malfunction. Furthermore, damage to outside threaded portion of the outer tube could prevent the shock absorber from being mounted onto the frame, or its internal components could deform, leading to a malfunction. **5. Never turn the screw on the bottom of the body.**

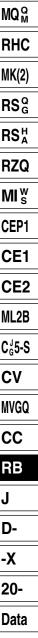
This is not an adjusting screw. Turning it could result in oil leakage.

6. Adjust the stopping time through the use of the stopper nut, as follows:

Control the stopping time of the impact object by turning the stopper nut in or out (thus changing length "a"). After establishing the stopper nut position, use a hexagon nut to secure the stopper nut in place.

Maintenance


1. Check the mounting nut is not loosen.

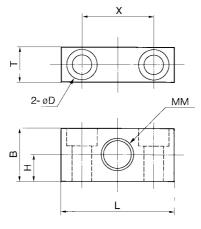

- The shock absorber could become damaged if it is used in a loose state. 2. Pay attention to any abnormal impact sounds or vibrations.
- If the impact sounds or vibrations have become abnormally high, the shock absorber may have reached the end of its service life. If this is the case, replace the shock absorber. If use is continued in this state, it could lead to equipment damage.
- 3. Confirm that abnormality, oil leakage, etc. in the outward surface. When a large amount of oil is leaking, replace the product, because it is believed to be happening something wrong with it. If it keeps on using, it may cause to break the equipment which is mounted by this product.
- 4. Inspect the bumper for any cracks or wear.

If the shock absorber comes with a bumper, the damper could wear first. To prevent bumper to the impact object, replace the bumper often.

5. How to replace bumper

The bumper inserted into the piston rod can be removed easily by a small screwdriver. When reassembling, push the smaller end of the bumper inside the piston.

Series RB, RBL Made to Order Specifications:


Foot Bracket for Shock Absorber

Available for the foot mounting bracket of Series RB.

	Part No.			
	Part no.	Applicable absorber		
	RB08-X331	RB⊡0805, 0806		
	RB10-X331	RB□1006, 1007		
	RB14-X331	RB⊡1411, 1412		
-	RB20-X331	RB□2015		
	RB27-X331	RB□2725		

* Order the foot bracket separately.

Dimensions

Part no.	В	D	Н	L	MM	Т	X	Mounting bolt
RB08-X331	15	4.5 drill, 8 counterbore depth 4.4	7.5	32	M8 x 1.0	10	20	M4
RB10-X331	19	5.5 drill, 9.5 counterbore depth 5.4	9.5	40	M10 x 1.0	12	25	M5
RB14-X331	25	9 drill, 14 counterbore depth 8.6	12.5	54	M14 x 1.5	16	34	M8
RB20-X331	38	11 drill, 17.5 counterbore depth 10.8	19	70	M20 x 1.5	22	44	M10
RB27-X331	50	13.5 drill, 20 counterbore depth 13	25	80	M27 x 1.5	34	52	M12

Made to Order