Technical data
Mounting and operating instructions

Possible mounting arrangements of MCB accessories

Operation

MCBs are switched on by moving the handle to the upper position. Stamped onto the handle switch, a "I" is visible confirming that the breaker is closed.
The MCBs are "trip-free," if the handle is being forced to the "ON" position, the breaker will still trip under fault conditions.
The " 0 " marking indicates that the breaker is in the "OFF" position. The MCB is now open and the load is disconnected from line power.

When a breaker has tripped, the MCB handle should first be set to the full "OFF" position to make certain the trip mechanism has been reset. Once the fault has been determined and cleared the MCB can again be switched "ON".

Maintenance

$A B B$ miniature circuit breakers require no special maintenance; only normal electrical system maintenance procedures are required.

Legend	
Auxiliary contact	H
Bell alarm/Auxiliary contact	S/H
Bell alarm/Auxiliary contact	
used as auxiliary contact	S/H (H)
Shunt trip	ST
Undervoltage release	UR

Technical data
Busbars \& connectors
Connection methods

Top and bottom dual function terminals provided in open position for connection to busbars or cable.

Top and bottom terminals may be bussed together with single phase or multi-phase busbars as shown. Both line and load side terminals can be bus bar connected.

Terminals allow for connection of cable 18-4 AWG [top row] and 18-8 AWG [bottom row].

Easy removal of devices from an assembly when using bus bar in the bottom, load side terminals.

Two slots per terminal offer the ability to connect, independently, two conductors. This may be cables or bus bar.

Conductors may only be inserted into open terminals, preventing mis-wiring and potential problems.

Technical data

Item	S200-B		S200-C, -D		S200-K		S200P-K	
Approvals: UL CSA VDE IEC	$\begin{gathered} 1077 \\ \text { C22.2-No. } 235 \\ 0641,0660 \\ 898,947 \end{gathered}$		$\begin{gathered} 1077 \\ \text { C22.2 } 0 \text { No. } 235 \\ 0660 \\ 898,947 \end{gathered}$		$\begin{gathered} 1077 \\ \text { C22.2 }- \text { No. } 235 \\ 0660 \\ 898,947 \end{gathered}$		$\begin{gathered} 1077 \\ - \\ 0660 \\ 898,947 \end{gathered}$	
No. of poles:	1,2,3,4 1+N, $3+\mathrm{N}$		1,2,3, 1+N, $3+\mathrm{N}$		1,2,3,4, 1+N,3+N		1,2,3,4,1+N, $3+N$	
Tripping characteristic:	B		C, D		K		K	
Rated currents:	6 to 63A		0.5 to 63A		0.5 to 63A		0.2 to 63A	
Minimum operating voltage:	12 V		12 V		12 V		12 V	
UL/CSA rated voltage \& interrupting capacity	Single pole Multi pole		Single pole Multi pole		Single pole Multi pole		Single pole Multipole	
120 VAC	10kA		10kA	-	10kA	-	10kA	
240 VAC	6 kA	10kA	6 kA	10kA	6 kA	10kA	10kA 10kA	
277VAC	6 kA	-	6 kA	-	6 kA	-	10kA	
277/480 VAC	-	6 kA	-	6 kA	6 kA		10kA	
60VDC	10kA	10kA	10kA	10kA	10kA 10kA		-	
125VDC	10kA		- 10kA		- 10kA		- -	
Frequency:	50/60Hz (See below)		$50 / 60 \mathrm{~Hz}$ (see below)		$50 / 60 \mathrm{~Hz}$ (see below)		$50 / 60 \mathrm{~Hz}$ (see below)	
Rated voltage IEC single pole IEC multi-pole	$\begin{gathered} \text { 240/415VAC } \\ \text { 60VDC } \\ \text { 415VAC } \\ \text { 110VDC } \end{gathered}$		$\begin{gathered} \text { 240/415VAC } \\ \text { 60VDC } \\ \text { 415VAC } \\ \text { 110VDC } \end{gathered}$		$\begin{gathered} 240 / 415 \mathrm{VAC} \\ 60 \mathrm{VDC} \\ \text { 415VAC } \\ 110 \mathrm{VDC} \end{gathered}$		$\begin{gathered} \text { 240/415VAC } \\ \text { 60VDC } \\ \text { 415VAC } \\ \text { 110VDC } \end{gathered}$	
Protection category:	IP20		IP20		IP20		IP20	
Depth of unit per DIN 43880:	68 mm		68 mm		68 mm		68 mm	
Mounting position:	optional		optional		optional		optional	
Standard mounting:	35 mm DIN rail							
Main and shunt trip terminals: Wire size Torque Tool	18-4 AWG [top] 18-8 [bottom] $17.5 \mathrm{in}-\mathrm{lbs}$. \#2 Posidrive		18-4 AWG [top] 18-8 [bottom] $17.5 \mathrm{in}-\mathrm{lbs}$. \#2 Posidrive		18-4 AWG [top] 18-8 [bottom] $17.5 \mathrm{in}-\mathrm{lbs}$. \#2 Posidrive		18-4 AWG [top] 18-8 [bottom] $17.5 \mathrm{in}-\mathrm{Ibs}$. \#2 Posidrive	
Accessory terminals Wire size Torque Tool	18-16 AWG 4.5 in-lbs. \#1 Posidrive		18-16 AWG 4.5 in - lbs. \#1 Posidrive		18-16 AWG 4.5 in-lbs. \#1 Posidrive		18-16 AWG 4.5 in-lbs. \#1 Posidrive	
Service life at rated load:	$I_{n}<32 \mathrm{~A}, 20,000$ operations $\mathrm{I}_{\mathrm{n}}^{\mathrm{n}}>32 \mathrm{~A}, 10,000$ operations		$\begin{aligned} & I_{n}<32 \mathrm{~A}, 20,000 \text { operations } \\ & I_{n}>32 \mathrm{~A}, 10,000 \text { operations } \end{aligned}$		$\begin{aligned} & I_{n}<32 \mathrm{~A}, 20,000 \text { operations } \\ & I_{n}>32 \mathrm{~A}, 10,000 \text { operations } \end{aligned}$		$\begin{aligned} & I_{n}<32 \mathrm{~A}, 20,000 \text { operations } \\ & I_{n}>32 \mathrm{~A}, 10,000 \text { operations } \end{aligned}$	
Ambient temperatures: Storage temperatures	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	
Shock resistance:	30 g minimum of 2 impacts, shock duration of 13 ms		30 g minimum of 2 impacts, shock duration of 13 ms		30 g minimum of 2 impacts, shock duration of 13 ms		30 g minimum of 2 impacts, shock duration of 13 ms	
Vibration resistance:	$5 \mathrm{~g}, 20$ cycles, $5 \mathrm{~Hz}, 150 \mathrm{~Hz}$ @ $0.8 \sim_{n}$		$\begin{gathered} 5 \mathrm{~g}, 20 \text { cycles, } 5 \mathrm{~Hz}, 150 \mathrm{~Hz} \\ @ 0.8 \sim \mathrm{I}_{\mathrm{n}} \end{gathered}$		$\begin{gathered} 5 \mathrm{~g}, 20 \text { cycles, } 5 \mathrm{~Hz}, 150 \mathrm{~Hz} \\ @ 0.8 \sim \mathrm{I}_{\mathrm{n}} \end{gathered}$		$5 \mathrm{~g}, 20$ cycles, $5 \mathrm{~Hz}, 150 \mathrm{~Hz}$ @ $0.8 \sim I_{n}$	
Disconnecting neutral rating:	6 KA switching		6 KA switching		6 kA switching		-	

Influence of frequency on electro-magnetic trips
Magnetic trip values shown on trip curves are valid for $50 / 60 \mathrm{~Hz}$ applications.
For frequencies other than $50 / 60 \mathrm{~Hz}$, the magnetic (instantaneous) trip values are increased by the factor given below:

	$162 / 3-60 \mathrm{~Hz}$	100 Hz	200 Hz	400 Hz	$D C$
Approx. factor	1	1.1	1.2	1.5	1.5

Thermal tripping is independent of frequency.

Technical data

Item	S280UC-K		S200P-Z		S280UC-Z		S290-C		
Approvals:									
UL					1077		-		
CSA	1077		1077				-		
VDE	0660		$\begin{gathered} 0660 \\ 898,947 \end{gathered}$		0660898,947		0660		
IEC	898,947				898				
No. of poles:	1,2,3		1,2,3,4				1,2,3		1,2,3,4
Tripping characteristic:	K		Z		Z		C		
Rated currents:	0.2 to 63A		0.5 to 63A		0.5 to 63A		80 to 125A		
Minimum operating voltage:	12 V		12 V		12 V		12 V		
UL/CSA rated voltage \& interrupting capacity	Single pole	Multi pole	Single pole	Multi pole	Single pole Multi pole				
120 VAC	10kA	-	10kA	-	10kA	-	-		
240VAC	10kA	10kA	10kA	10kA	10kA	10kA	-		
277VAC	10kA	-	10kA	-	10kA		-		
277/480 VAC	-	4.5kA for $0.2-40 \mathrm{~A}$ 5kA for 50-63A	10kA		-	4.5kA for $0.2-40 \mathrm{~A}$ 5 kA for 50-63A	-		
60VDC	10kA	10kA	-	-	10kA	10kA	-		
125 VDC	10kA	10kA	-	-	10kA	10kA	-		
250VDC	4.5 kA	4.5 kA	-	-	4.5 kA	4.5 kA	-		
500VDC	-	4.5 kA	-	-	-	4.5 kA	-		
Frequency:	$50 / 60 \mathrm{~Hz}$ (see below)		$50 / 60 \mathrm{~Hz}$ (see below)		$50 / 60 \mathrm{~Hz}$ (see below)		$50 / 60 \mathrm{~Hz}$ (see below)		
Rated voltage	240/415VAC		240/415VAC60VDC						
IEC single pole	22	DC			$\begin{aligned} & \text { 240/415VAC } \\ & 220 \mathrm{VDC} \end{aligned}$		$\begin{gathered} 230 / 440 \mathrm{VAC} \\ 60 \mathrm{VDC} \end{gathered}$		
IEC multi-pole	415 VAC		415 VAC		415 VAC		440VAC110 VDC		
	440 VDC		110 VDC		440 VDC				
Protection category:	IP20		IP20		IP20		IP20		
Depth of unit per DIN 43880:	68 mm		68 mm		68 mm		70 mm		
Mounting position:	optional		optional		optional		optional		
Standard mounting:	35 mm DIN rail		35 mm DIN rail		35 mm DIN-rail		35 mm DIN-rail		
Main and shunt trip terminals: Wire size	$\begin{array}{cc} 0.2-40 \mathrm{~A} & \text { 18-4 AWG } \\ 50 \mathrm{~A} \& \text { above } & 18-2 \text { AWW } \end{array}$		18-4 AWG [top] 18-8 AWG [bottom]		0.5-40A18-2 AWG		80-125A 14-1/0 AWG		
Torque Tool	17.5 in-lbs. \#2 Posidrive		17.5 in-lbs. \#2 Posidrive		17.5 in -lbs. \#2 Posidrive		17.5 in-lbs. \#2 Posidrive		
Accessory terminals									
Wire size	18-16 AWG		18-16 AWG		18-16 AWG		18-16 AWG 4.5 in-lbs. \#1 Posidrive		
Torque	4.5 in-lbs. \#1 Posidrive		4.5 in-lbs. \#1 Posidrive		4.5 in-lbs. \#1 Posidrive				
Tool									
Service life at rated load:	$I_{n}<32 \mathrm{~A}, 20,000$ operations$I_{n}>32 \mathrm{~A}, 10,000$ operations		$I_{n}<32 \mathrm{~A}, 20,000$ operations $I_{n}^{n}>32 \mathrm{~A}, 10,000$ operations		$I_{n}<32 \mathrm{~A}, 20,000$ operations $\mathrm{I}_{\mathrm{n}}^{\mathrm{n}}>32 \mathrm{~A}, 10,000$ operations		10,000 operations		
Ambient temperatures: Storage temperatures	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & -5^{\circ} \mathrm{C} \text { to }+45^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$		
Shock resistance:	30 g minimum of 2 impacts, shock duration of 13 ms		30 g minimum of 2 impacts, shock duration of 13 ms		30 g minimum of 2 impacts, shock duration of 13 ms		30 g minimum of 2 impacts, shock duration of 13 ms		
Vibration resistance:	$\begin{gathered} 5 \mathrm{~g}, 20 \text { cycles, } 5 \mathrm{~Hz}, 150 \mathrm{~Hz} \\ @ 0.8 \sim \mathrm{I}_{\mathrm{n}} \end{gathered}$		$5 \mathrm{~g}, 20$ cycles, $5 \mathrm{~Hz}, 150 \mathrm{~Hz}$ @ $0.8 \sim I_{n}$		$5 \mathrm{~g}, 20$ cycles, $5 \mathrm{~Hz}, 150 \mathrm{~Hz}$ @ $0.8 \sim I_{n}$		$60 \mathrm{~m} / \mathrm{s}^{2}$, at $10-150 \mathrm{~Hz}$		

Influence of frequency on electro-magnetic trips

Magnetic trip values shown on trip curves are valid for $50 / 60 \mathrm{~Hz}$ applications.
For frequencies other than $50 / 60 \mathrm{~Hz}$, the magnetic (instantaneous) trip values are
increased by the factor given below:

	$162 / 3-60 \mathrm{~Hz}$	100 Hz	200 Hz	400 Hz	$D C$
Approx. factor	1	1.1	1.2	1.5	1.5

Thermal tripping is independent of frequency.

Technical data

Item	S200U-K	S200U-Z	S200UP-K	S200UP-Z
Approvals:				
UL	489	489	489	489
CSA	C22.2 No. 5	C22.2 No. 5	C22.2 No. 5	C22.2 No. 5
VDE	0660	0660	0660	0660
IEC	898,947	898,947	898,947	898
No. of poles:	1,2,3,4	1,2,3,4	1,2,3,4	1,2,3,4
Tripping characteristic:	K	Z	K	Z
Rated currents:	0.2 to 63A	0.2 to 63A	0.2 to 25A	0.2 to 25A
Minimum operating voltage:	12 V	12 V	12 V	12 V
UL/CSA rated voltage \& interrupting capacity				
120 VAC	10kA	10kA	10kA	10kA
240 VAC	10kA	10kA	10kA	10kA
277VAC	10kA	10kA		
480/277 VAC	-	-	10kA	10kA
Frequency:	50/60Hz (see below)	$50 / 60 \mathrm{~Hz}$ (see below)	50/60Hz (see below)	50/60Hz (see below)
Rated voltage				
IEC single pole	240/415VAC	240/415VAC	240/415VAC	240/415VAC
	220 VDC	60VDC	220 VDC	220 VDC
IEC multi-pole	415 VAC	415 VAC	415 VAC	415 VAC
	440 VDC	110 VDC	440 VDC	440VDC
Protection category:	IP20	IP20	IP20	IP20
Depth of unit per DIN 43880:	68 mm	68 mm	68 mm	68 mm
Mounting position:	optional	optional	optional	optional
Standard mounting:	35 mm DIN rail	35 mm DIN rail	35 mm DIN-rail	35 mm DIN-rail
Main and shunt trip terminals: Wire size				
	18-8 AWG [bottom]	18-8 AWG [bottom]	18-8 AWG [bottom]	18-8 AWG [bottom]
Torque Tool	17.5 in -lbs. \#2 Posidrive	17.5 in -lbs. \#2 Posidrive	17.5 in -lbs. \#2 Posidrive	17.5 in-lbs. \#2 Posidrive
Accessory terminals				
Wire size	18-16 AWG	18-16 AWG	18-16 AWG	18-16 AWG
Torque Tool	4.5 in-lbs. \#1 Posidrive			
Service life at rated load:	$\mathrm{I}_{\mathrm{n}}<32 \mathrm{~A}, 20,000$ operations $\mathrm{I}_{n}>32 \mathrm{~A}, 10,000$ operations	$\begin{aligned} & I_{n}<32 \mathrm{~A}, 20,000 \text { operations } \\ & I_{n}>32 \mathrm{~A}, 10,000 \text { operations } \end{aligned}$	$I_{n}<32 \mathrm{~A}, 20,000$ operations $I_{n}>32 \mathrm{~A}, 10,000$ operations	$\mathrm{I}_{\mathrm{n}}<32 \mathrm{~A}, 20,000$ operations $\mathrm{I}_{\mathrm{n}}^{\mathrm{n}}>32 \mathrm{~A}, 10,000$ operations
Ambient temperatures: Storage temperatures	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
Shock resistance:	30 g minimum of 2 impacts, shock duration of 13 ms	30 g minimum of 2 impacts, shock duration of 13 ms	30 g minimum of 2 impacts, shock duration of 13 ms	30 g minimum of 2 impacts, shock duration of 13 ms
Vibration resistance:	$\begin{gathered} 5 \mathrm{~g}, 20 \text { cycles, } 5 \mathrm{~Hz}, 150 \mathrm{~Hz} \\ @ 0.8 \sim \mathrm{I}_{\mathrm{n}} \end{gathered}$	$5 \mathrm{~g}, 20$ cycles, $5 \mathrm{~Hz}, 150 \mathrm{~Hz}$ @ $0.8 \sim I_{n}$	$\begin{gathered} 5 \mathrm{~g}, 20 \text { cycles, } 5 \mathrm{~Hz}, 150 \mathrm{~Hz} \\ @ 0.8 \sim \mathrm{I}_{\mathrm{n}} \end{gathered}$	$\begin{gathered} 5 \mathrm{~g}, 20 \text { cycles, } 5 \mathrm{~Hz}, 150 \mathrm{~Hz} \\ @ 0.8 \sim \mathrm{I}_{\mathrm{n}} \end{gathered}$

Influence of frequency on electro-magnetic trips

Magnetic trip values shown on trip curves are valid for $50 / 60 \mathrm{~Hz}$ applications.
For frequencies other than $50 / 60 \mathrm{~Hz}$, the magnetic (instantaneous) trip values are increased by the factor given below:

	$162 / 3-60 \mathrm{~Hz}$	100 Hz	200 Hz	400 Hz	$D C$
Approx. factor	1	1.1	1.2	1.5	1.5

Thermal tripping is independent of frequency.

Technical data
 Wire size comparison

Comparison of IEC and AWG wire sizes

mm	AWG (mm	Amps $/$ UL	
1.0	$-\overline{1.3}$	-	
-	16	-	-

Ampacities for AWG wire are based on copper cable rated $75^{\circ} \mathrm{C}$, except for 16 AWG which is based on $60^{\circ} \mathrm{C}$ wire. Taken from UL508 Table 52.2.
Consult applicable standards for futher detail and information.

